
Model Predictive Control Toolbox™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Model Predictive Control Toolbox™ Release Notes
© COPYRIGHT 2005–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2021a

Discrete Control Set MPC: Solve linear MPC problems with manipulated
variables belonging to discrete sets . 1-2

Multistage Nonlinear MPC: Solve nonlinear MPC problems efficiently
with multiple stage cost and constraints . 1-2

GPU Code Generation Support in MATLAB and Simulink 1-3
GPU Code Generation in MATLAB . 1-3
Code Generation in Simulink . 1-3

Functionality being removed or changed . 1-4
Support for opening MPC Design Tool sessions saved before release R2015b

will be removed . 1-4

R2020b

Implement MPC Controllers using Embotech FORCES PRO Solvers 2-2

Online Time-Varying Constraints: Simulate MPC controllers with
constraints that vary over the prediction horizon at run time 2-2

Reference Examples: Design and simulate automated driving applications
that use model predictive controllers . 2-2

R2020a

Interior-Point QP Solver: Efficiently compute optimal control moves for
large-scale MPC problems . 3-2

Nonlinear MPC Code Generation: Generate code for nonlinear MPC
controllers that use default fmincon solver with the SQP algorithm
. 3-2

Code Generation in MATLAB . 3-2
Code Generation in Simulink . 3-2
Simulate Nonlinear MPC Controller Using MEX File 3-3

iii

Contents

Reference Examples: Design model predictive controllers for automated
driving applications . 3-3

Functionality Being Removed or Changed . 3-3
MPC controller properties for configuring active-set QP solver have

changed . 3-3
mpcqpsolverOptions will be removed . 3-3
mpcqpsolver will be removed . 3-4
mpchelp has been removed . 3-5

R2019b

Reference Examples: Design model predictive controllers for robotics and
automated driving applications . 4-2

R2019a

Path Following Control System Block: Design, simulate, and implement
lane-following controllers in Simulink . 5-2

Run-Time Horizon Tuning: Make run-time updates to controller
prediction and control horizons . 5-2

Nonlinear MPC: Simulate as an adaptive or linear time-varying MPC
controller to determine if a linear controller provides comparable
performance . 5-2

Nonlinear MPC: Linearly interpolate block moves when using
manipulated variable blocking with nonlinear MPC controllers 5-3

R2018b

Nonlinear MPC: Design and simulate model predictive controllers with
nonlinear prediction models, constraints, and cost functions 6-2

Run-Time Tuning of Time-Varying Weights: Make run-time updates to
controller weights that change over the prediction horizon 6-2

MPC Simulink Block Optimal Sequences: Obtain optimal predicted
outputs and states . 6-2

MPC Simulink Block Run-Time Constraints: Independently enable input
and output constraints . 6-3

iv Contents

Lane Keeping Assist System Block: Model transport lag in ego car
dynamic model . 6-3

review Function Results Structure: Programmatically review controller
designs and obtain test results . 6-3

ADAS Examples: Design controllers for lane following 6-3

Functionality Being Removed or Changed . 6-4
Support for implementing economic MPC using a linear MPC controller has

been removed . 6-4
MPC Simulink block mv.seq output port signal dimensions have changed

. 6-4

R2018a

ADAS Blocks: Design, simulate, and implement adaptive cruise control
and lane-keeping algorithms . 7-2

R2017b

Economic MPC: Design and simulate model predictive controllers with
arbitrary nonlinear cost function and constraints 8-2

Fast MPC: Guarantee worst-case execution time by using approximate QP
solution . 8-2

Custom QP Solvers: Generate code for third-party QP solvers written in
C/C++ or MATLAB code suitable for code generation 8-2

Mixed Input/Output Constraints: Update constraints on linear
combinations of inputs and outputs at run time 8-2

ADAS Examples: Design controllers for adaptive cruise control,
autonomous vehicle steering, and obstacle avoidance 8-3

R2017a

New Examples: Design and simulate nonlinear model predictive
controller in MATLAB and Simulink . 9-2

v

R2016b

Multiple Explicit MPC Controllers Block: Implement gain-scheduled
explicit MPC controllers in Simulink . 10-2

MPC Designer App: Automatically estimate controller sample time when
setting internal plant using stable, continuous-time model 10-2

MPC Designer App: Load previously saved session when opening app from
command line . 10-2

MPC Designer App: Import identified linear models 10-2

MPC Controller Creation Using Identified Linear Models: Discard noise
channels by default . 10-3

Functionality being removed or changed . 10-3

R2016a

Adaptive MPC with Time-Varying Prediction Models: Simulate adaptive
MPC controllers with prediction models that change over the
prediction horizon . 11-2

mpcmoveCodeGeneration Command: Generate C code for computing
optimal manipulated variable control moves . 11-2

Custom QP Solver: Simulate model predictive controllers with a QP solver
of your choice . 11-2

R2015b

Redesigned MPC Designer App: Design model predictive controllers in
MATLAB and Simulink using improved interactive workflows 12-2

MATLAB Script Generation from MPC Designer App: Automatically script
model predictive controller design tasks . 12-2

Simulink Model Generation from MPC Designer App: Automatically
create a Simulink model with an MPC controller and plant model . . 12-2

mpcqpsolver Command: Develop and generate code for custom model
predictive controllers using KWIK quadratic programming solver . . 12-2

Review model predictive controller design using MPC Designer app . . . 12-3

vi Contents

Comparison of responses for multiple model predictive controllers in the
same plot using MPC Designer app . 12-3

Interactive tuning of model predictive controller performance objectives
. 12-3

mpctool command renamed to mpcDesigner . 12-4

Functionality being removed or changed . 12-4

R2015a

OutputVariables Integrator property of MPC controller being removed
. 13-2

setoutdist command 'remove' syntax being removed 13-2

Functionality being removed or changed . 13-3

R2014b

Explicit MPC control for applications with fast sample times using
precomputed solutions . 14-2

Adaptive MPC control through run-time changes to internal plant model
. 14-2

ScaleFactor property for MPC controllers, for making weight tuning
independent of the engineering units of input and output variables
. 14-2

Option to use custom state estimation or measured state values instead
of the built-in state estimation in MPC controllers 14-3

Option to specify manipulated variable target . 14-3

Run-time weight tuning on manipulated variables 14-3

Run-time weight tuning and performance monitoring in Multiple MPC
Controllers block . 14-3

getEstimator and setEstimator commands to obtain and change state
estimation parameters . 14-4

Definition of external MV signal changed . 14-4

vii

Unconnected input and output limits inports default changed to match
mpc object . 14-4

R2014a

IEC 61131–3 Structured Text generation from MPC Controller and
Multiple MPC Controllers blocks using Simulink PLC Coder 15-2

Reduced RAM usage for C code generated for MPC Controller and
Multiple MPC Controllers blocks . 15-2

Estimate of data memory size used by deployed MPC controller at run
time . 15-2

R2013b

Controller design for plant and disturbance models with internal delays
. 16-2

Single-precision simulation and code generation using MPC Controller
and Multiple MPC Controllers blocks . 16-2

Conditional execution of MPC Controller and Multiple MPC Controllers
blocks using Function-Call Subsystem and Triggered Subsystem blocks
. 16-2

R2013a

Bug Fixes

R2012b

Bug Fixes

viii Contents

R2012a

Run-Time Preview of Reference and Measured Disturbance Signals with
MPC Controller Block . 19-2

R2011b

C Code Generation Improvements for All Targets with MPC Controller
Block . 20-2

Faster QP Solver Algorithm for Improving MPC Controller Performance
. 20-2

Run-Time Weight Tuning and Constraint Softening for MPC Controller
. 20-2

Run-Time Monitoring of MPC Controller Performance to Detect When an
Optimal Solution Cannot Not Be Found . 20-2

review Command for Diagnosing Issues with MPC Controller Parameters
That Could Lead to Run-Time Failures . 20-3

mpcmove Returns Aligned Time Horizons for Optimal Control, Predicted
Output and Estimated State . 20-3

Functionality Being Removed or Changed . 20-3

R2011a

Support for Custom Constraints on MPC Controller Inputs and Outputs
. 21-2

Ability to Specify Terminal Constraints and Weights on MPC Controller
. 21-2

Ability to Access Optimal Cost and Optimal Control Sequence 21-2

R2010b

No New Features or Changes

ix

R2010a

New Ability to Analyze SISO Generalized Predictive Controllers (GPC)
. 23-2

R2009b

Bug Fixes

R2009a

New Sensitivity Analysis to Determine Effect of Weights on Tuning MPC
Controllers . 25-2

R2008b

New Multiple MPC Controllers Block in the Model Predictive Control
Toolbox Simulink Library . 26-2

Tested Code Generation Support for Real-Time Workshop Target Systems
. 26-2

Ability to Design Controllers with Time-Varying Weights and Constraints
Using the GUI . 26-2

R2008a

No New Features or Changes

R2007b

New Option for Specifying Time-Varying Constraints 28-2

x Contents

Ability to Specify Nondiagonal Q and R Weight Matrices in the Cost
Function . 28-2

R2007a

Bug Fixes

R2006b

No New Features or Changes

R2006a

Bumpless Transfer Added to MPC Block . 31-2

New Bumpless Transfer Demo . 31-2

R14SP3

No New Features or Changes

R14SP2

No New Features or Changes

xi

R2021a

Version: 7.1

New Features

Bug Fixes

Compatibility Considerations

1

Discrete Control Set MPC: Solve linear MPC problems with
manipulated variables belonging to discrete sets
You can now solve linear MPC problems in which some or all manipulated variables belong to discrete
sets. To do so, for a given manipulated variable, specify the new Type field of the corresponding
ManipulatedVariables structure in the mpc object:

• 'binary' — Restrict the manipulated variable to be either 0 or 1.
• 'integer' — Restrict the manipulated variable to be an integer.
• Vector containing a discrete set of admissible values — Restrict the manipulated variable to the
specified values, for example mpcobj.MV(2).Type=[-1,0,0.5,1,2];.

By default, the type is set to 'continuous', indicating that the manipulated variable is continuous.

You can simulate a discrete set linear MPC controller in:

• MATLAB® — using sim, mpcmove, mpcmoveAdaptive and mcmoveMultiple.
• Simulink® — using the MPC Controller, Adaptive MPC Controller, and Multiple MPC Controllers

blocks.

When simulating multiple controllers using mcmoveMultiple or the Multiple MPC Controllers block,
all candidate controllers must use the same manipulated variable type configuration.

Code generation from a controller with discrete control sets is supported in both MATLAB and
Simulink.

A new internal mixed-integer quadratic programming (MIQP) solver is used to solve the discrete set
MPC problem. You can use the new property Optimizer.MixedIntegerOptions of the mpc object
to customize the options for this solver (like for example number of iterations and constraints
tolerance).

For more information and examples on discrete control set MPC see “Discrete Control Set MPC”,
“Solve a Discrete Set MPC Problem in MATLAB”, and “Surge Tank Control Using Discrete Control Set
MPC”.

Multistage Nonlinear MPC: Solve nonlinear MPC problems efficiently
with multiple stage cost and constraints
You can now solve nonlinear MPC problems in which different cost and constraint functions are
defined for different specific prediction steps (stages). Specifically, a multistage MPC controller with
a prediction horizon of length p has p+1 stages (where the first stage is the one active at the current
time, and the last stage is the terminal one).

For a multistage MPC controller, each stage has its own decision variables and parameter vector, as
well as its own nonlinear cost and constraints (which are only functions of the decision variables and
parameter vector at this stage). This allows for a much more efficient computation and storage of the
gradient functions, thereby resulting in general in much faster execution times.

To create a multistage nonlinear MPC object, use nlmpcMultistage, and define the cost and
constraint functions for each stage. You can additionally specify standard bounds on inputs and
states.

You can simulate a multistage MPC controller in:

R2021a

1-2

• MATLAB — using nlmpcmove.
• Simulink — using the Multistage Nonlinear MPC Controller block.

Compared to nonlinear MPC, neither plant output nor weight are explicitly defined in
nlmpcMultistage objects, since you can weight any combination of state and input in each stage
cost and constraint function. Additionally, you can specify number of slack variables needed at any
stage.

Code generation from a nonlinear multistage controller is supported in both MATLAB and Simulink.

For examples on how to create and use multistage MPC controller, see “Create and Simulate a
Multistage Nonlinear MPC Controller”, “Simulate a Multistage Nonlinear MPC Controller Using
Initial Guesses” and “Truck and Trailer Automatic Parking Using Multistage Nonlinear MPC”.

GPU Code Generation Support in MATLAB and Simulink
From both MATLAB and Simulink, you can now generate code for linear MPC controllers that use a
GPU.

GPU Code Generation in MATLAB

To generate and use GPU code in MATLAB:

1 Create data structures from your linear MPC controller using the getCodeGenerationData
function.

2 Optionally simulate your controller using the mpcmoveCodeGeneration function and the data
structures, instead of using the mpcmove function.

3 Create a coder configuration option object using the coder.gpuConfig function, and configure
the code generation options.

4 Generate code for the mpcmoveCodeGeneration function using the codegen function and the
coder configuration options object. Doing so generates a new function that uses code running on
the GPU.

5 Simulate your controller using the generated function and the data structures.

For more information, see “Generate Code and Deploy Controller to Real-Time Targets”.

For an example on using GPU code in MATLAB see “Use the GPU to Compute MPC Moves in
MATLAB”.

Code Generation in Simulink

You can generate and use GPU code from the MPC Controller, Adaptive MPC Controller, or Explicit
MPC Controller blocks.

To generate GPU code from a Simulink model containing any of these blocks, open the Configuration
Parameters dialog box by clicking Model Settings. Then, in the Code Generation section, select
Generate GPU code.

For more information, see “Generate Code and Deploy Controller to Real-Time Targets”.

For details on how to configure your model for GPU code generation, see “Code Generation from
Simulink Models with GPU Coder” (GPU Coder).

1-3

Functionality being removed or changed
Support for opening MPC Design Tool sessions saved before release R2015b will be
removed
Warns

Support for opening MPC Design Tool sessions saved before release R2015b will be removed in
release R2021b.

If you have sessions saved before release R2015b, open and resave the session files using MPC
Designer in any release from R2015b through R2021a.

R2021a

1-4

R2020b

Version: 7.0

New Features

Bug Fixes

Compatibility Considerations

2

Implement MPC Controllers using Embotech FORCES PRO Solvers
You can use a Model Predictive Control Toolbox plugin developed by Embotech AG to simulate and
generate code for linear and nonlinear MPC controllers. The plugin leverages the FORCES PRO real-
time embedded optimization software, and allows you to generate custom solvers that are highly
optimized on your specific MPC problem and deploy them on real-time hardware, achieving a
superior computational performance.

For more information, see Implement MPC Controllers using Embotech FORCES PRO Solvers.

Online Time-Varying Constraints: Simulate MPC controllers with
constraints that vary over the prediction horizon at run time
You can now simulate any MPC controller with constraints that vary over the prediction horizon at
run time. You can do so both at the command line and in Simulink. This method of specifying
constraints is the same as that already used for nonlinear MPC controllers.

To vary constraints at the command line, specify the OutputMin, OutputMax, MVMin, and MVMax
properties of an mpcmoveopt object as arrays. Each row in the array contains the constraints for one
prediction horizon step. You can then use these constraints when simulating a controller using
mpcmove, mpcmoveAdaptive, or mpcmoveMultiple. For more information on the format of these
arrays, see the corresponding properties of nlmpcmoveopt.

To vary constraints in Simulink, connect matrix signals to the ymin, ymax, umin, and umax constraint
input ports of the MPC Controller, Adaptive MPC Controller, or Multiple MPC Controllers blocks.
Each row in the matrix signal contains the constraints for one prediction horizon step. For more
information on the format of these matrix signals, see the y.min, y.max, mv.min, and mv.max
signals for the Nonlinear MPC Controller block.

Compatibility Considerations
To specify an input or output constraint that varies across the prediction horizon, you set the
corresponding property of the MPC controller object as a vector. Each element of the vector contains
the constraint value for one prediction horizon step.

In previous releases, at run time, you could change only the first element of this constraint vector.
The controller retained the constraint profile by adding a constant offset to the remaining elements.

If your application requires maintaining the constraint profile across the prediction horizon, you can
still use the previous method for specifying constraints.

If your application requires changing the constraint profile at run time, you can use the new method
for specifying constraints.

Reference Examples: Design and simulate automated driving
applications that use model predictive controllers
The following new examples show how to automated driving applications that use model predictive
controllers.

• Highway Lane Following with Intelligent Vehicles

R2020b

2-2

https://www.embotech.com/
https://www.embotech.com/forces-pro/
https://www.mathworks.com/help/releases/R2020b/mpc/ug/integrate-with-embotech-forces-pro-solvers.html
https://www.mathworks.com/help/releases/R2020b/mpc/ref/nlmpcmoveopt.html
https://www.mathworks.com/help/releases/R2020b/mpc/ref/nonlinearmpccontroller.html
https://www.mathworks.com/help/releases/R2020b/mpc/ug/highway-lane-following-with-intelligent-vehicles.html

• Traffic Light Negotiation with Unreal Engine Visualization

2-3

https://www.mathworks.com/help/releases/R2020b/mpc/ug/traffic-light-negotiation-with-unreal-engine-visualization.html

R2020a

Version: 6.4

New Features

Bug Fixes

Compatibility Considerations

3

Interior-Point QP Solver: Efficiently compute optimal control moves for
large-scale MPC problems
You can now design an MPC controller that uses an interior-point QP solver instead of the default
active-set solver. Using an interior-point solver can provide superior performance for large-scale
optimization problems, such as MPC applications that enforce constraints over large prediction and
control horizons. For more information on configuring the solver for your MPC controller, see QP
Solvers.

You can also use the new interior-point solver to develop your own custom model predictive
controllers or as a general-purpose QP solver that supports code generation. To do so, use the
mpcInteriorPointSolver function. To specify solver options, use the
mpcInteriorPointOptions function.

Compatibility Considerations
The method for configuring QP solver options for an MPC controller object has changed. For more
information, see “MPC controller properties for configuring active-set QP solver have changed” on
page 3-3.

To distinguish the existing active-set QP solver from the new interior-point QP solver, the
mpcqpsolver and mpcqpsolverOptions functions are replaced by the new mpcActiveSetSolver
and mpcActiveSetOptions functions, respectively. For more information, see “mpcqpsolver will be
removed” on page 3-4 and “mpcqpsolverOptions will be removed” on page 3-3.

Nonlinear MPC Code Generation: Generate code for nonlinear MPC
controllers that use default fmincon solver with the SQP algorithm
You can now generate code for nonlinear MPC controllers that use the default fmincon solver with
the SQP algorithm. You can generate code in both MATLAB and Simulink.

Code Generation in MATLAB

To generate code in MATLAB:

1 Create data structures from your nonlinear MPC controller using the getCodeGenerationData
function.

2 Simulate your controller using the nlmpcmoveCodeGeneration function in place of
nlmpcmove.

3 Generate code for the nlmpcmoveCodeGeneration function.

Code Generation in Simulink

You generate code for the Nonlinear MPC Controller block in the same manner as you do for the
other MPC controller Simulink blocks.

If your nonlinear MPC controller uses optional parameters, you connect the output of a Bus Creator
block to the params input port of the block. To generate code for such a controller, you must place
the Nonlinear MPC Controller block and Bus block together in a subsystem. Then, you can generate
code for the subsystem.

R2020a

3-2

https://www.mathworks.com/help/releases/R2020a/mpc/ug/qp-solver.html
https://www.mathworks.com/help/releases/R2020a/mpc/ug/qp-solver.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/mpcinteriorpointsolver.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/mpcinteriorpointoptions.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/mpcactivesetsolver.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/mpcactivesetoptions.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/nlmpc.getcodegenerationdata.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/nlmpcmovecodegeneration.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/nlmpc.nlmpcmove.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/nonlinearmpccontroller.html

Simulate Nonlinear MPC Controller Using MEX File

You can speed up simulation of nonlinear MPC controllers by simulating your controller using a MEX
file instead of calling nlmpcmove. Doing so is useful when you run multiple simulations using the
same nonlinear MPC controller design. You can also use the generated MEX file when simulating your
controller using the Nonlinear MPC Controller block.

To create the MEX file, use the new buildMEX function.

Reference Examples: Design model predictive controllers for
automated driving applications
The following new examples show how to design and simulate model predictive controllers for
automated driving applications.

• Parallel Parking Using Nonlinear Model Predictive Control
• Parallel Parking Using RRT Planner and MPC Tracking Controller
• Parking Valet Using Nonlinear Model Predictive Control
• Highway Lane Change
• Traffic Light Negotiation
• Automate Testing for Highway Lane Following

Functionality Being Removed or Changed
MPC controller properties for configuring active-set QP solver have changed
Warns

The MPC controller properties for configuring the default active-set QP solver have changed. These
changes require updates to your code.

Settings specific to the active-set solver are now in the Optimizer.ActiveSetOptions property of
the controller instead of the Optimizer property. Any settings that apply to both the default active-
set solver and the new interior-point solver remain in the Optimizer controller property.
Update Code

This table shows the MPC controller QP solver properties that have changed and how to update your
code.

Not Recommended Recommended
mpcobj.Optimizer.MaxIter mpcobj.Optimizer.ActiveSetOptions.MaxIterations
mpcobj.Optimizer.UseWarmStart mpcobj.Optimizer.ActiveSetOptions.UseWarmStart

mpcqpsolverOptions will be removed
Warns

mpcqpsolverOptions will be removed in a future release. Use mpcActiveSetOptions instead.
There are differences between these functions that require updates to your code.
Update Code

To update your code:

3-3

https://www.mathworks.com/help/releases/R2020a/mpc/ref/nlmpc.buildmex.html
https://www.mathworks.com/help/releases/R2020a/mpc/ug/parallel-parking-using-nonlinear-model-predictive-control.html
https://www.mathworks.com/help/releases/R2020a/mpc/ug/parallel-parking-using-rrt-planner-and-mpc-tracking-controller.html
https://www.mathworks.com/help/releases/R2020a/mpc/ug/parking-valet-using-nonlinear-model-predictive-control.html
https://www.mathworks.com/help/releases/R2020a/mpc/ug/highway-lane-change.html
https://www.mathworks.com/help/releases/R2020a/mpc/ug/traffic-light-negotiation.html
https://www.mathworks.com/help/releases/R2020a/mpc/ug/automate-testing-for-highway-lane-following.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/mpcactivesetoptions.html

• Change the function name from mpcqpsolverOptions to mpcActiveSetOptions. The syntaxes
are equivalent.

• Some field names of the returned structure have changed. The default field values are the same.
This table shows the new property names.

Previous Property Name New Property Name
MaxIter MaxIterations
FeasibilityTol ConstraintTolerance

• The returned structure of mpcActiveSetOptions contains the new field UseHessianAsInput.
To continue to use the inverse of the lower-triangular decomposition of the Hessian matrix with
mpcActiveSetSolver, you must set UseHessianAsInput to false.

mpcqpsolver will be removed
Warns

mpcqpsolver will be removed in a future release. Use mpcActiveSetSolver instead. There are
differences between these functions that require updates to your code.

Update Code

The following differences require updates to your code:

• For mpcActiveSetSolver, you define inequality constraints in the form Ax≤b. Previously, for
mpcqpsolver, you defined inequality constraints in the form Ax≥b.

• For mpcActiveSetSolver, you specify solver options with a structure created using the
mpcActiveSetOptions function. Previously, for mpcqpsolver, you created an option structure
using the mpcqpsolverOptions function. These option structures contain the same options,
though some option names have changed.

• By default, you pass the Hessian matrix to mpcActiveSetSolver. Previously, you passed the
inverse of lower-triangular Cholesky decomposition (Linv) of the Hessian matrix to
mpcqpsolver. To continue to use Linv, set the UseHessianAsInput field of the structure
returned by mpcActiveSetSolver to false.

• When your QP problem has either no inequality constraints or no equality constraints, the
corresponding A or Aeq input argument to mpcActiveSetSolver must be zeros(0,n), where n
is the number of decision variables. Previously, for mpcqpsolver, you specified these input
arguments as [].

This table shows some typical usages of mpcqpsolver and how to update your code to use
mpcActiveSetSolver instead.

Not Recommended Recommended
opt = mpcqpsolverOptions;
[x,status] = mpcqpsolver(Linv,f,A,b,...
 Aeq,beq,iA0,opt);

opt = mpcActiveSetOptions;
opt.UseHessianAsInput = false;
[x,status] = mpcActiveSetSolver(Linv,f,...
 -A,-b,Aeq,beq,iA0,opt);

Alternatively, you can use the Hessian matrix H.

opt = mpcActiveSetOptions;
[x,status] = mpcActiveSetSolver(H,f,...
 -A,-b,Aeq,beq,iA0,opt);

R2020a

3-4

https://www.mathworks.com/help/releases/R2020a/mpc/ref/mpcactivesetsolver.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/mpcactivesetoptions.html
https://www.mathworks.com/help/releases/R2020a/mpc/ref/mpcqpsolveroptions.html

Not Recommended Recommended
opt = mpcqpsolverOptions('single');
[x,status] = mpcqpsolver(Linv,f,A,b,...
 Aeq,beq,iA0,opt);

opt = mpcActiveSetOptions('single');
opt.UseHessianAsInput = false;
[x,status] = mpcActiveSetSolver(Linv,f,...
 -A,-b,Aeq,beq,iA0,opt);

opt = mpcqpsolverOptions;
opt.MaxIter = 300;
opt.FeasibilityTol = 1e-5;
[x,status] = mpcqpsolver(Linv,f,A,b,...
 Aeq,beq,iA0,opt);

opt = mpcActiveSetOptions;
opt.UseHessianAsInput = false;
opt.MaxIterations = 300;
opt.ContraintTolerance = 1e-5;
[x,status] = mpcActiveSetSolver(Linv,f,...
 -A,-b,Aeq,beq,iA0,opt);

[x,status] = mpcqpsolver(Linv,f,[],...
 zeros(0,1),Aeq,beq,iA0,opt);

n = length(f);
opt.UseHessianAsInput = false;
[x,status] = mpcActiveSetSolver(Linv,f,...
 zeros(0,n),zeros(0,1),Aeq,beq,iA0,opt);

[x,status] = mpcqpsolver(Linv,f,A,b,...
 [],zeros(0,1),iA0,opt);

n = length(f);
opt.UseHessianAsInput = false;
[x,status] = mpcActiveSetSolver(Linv,f,...
 -A,-b,zeros(0,n),zeros(0,1),iA0,opt);

mpchelp has been removed

mpchelp has been removed. To view Model Predictive Control Toolbox help at the command line,
type help mpc. To view the Model Predictive Control Toolbox documentation, type doc mpc.

3-5

R2019b

Version: 6.3.1

Bug Fixes

4

Reference Examples: Design model predictive controllers for robotics
and automated driving applications
The following new examples show how to design and simulate model predictive controllers for
robotics and automated driving:

• Control of Quadrotor Using Nonlinear Model Predictive Control
• Lane Change Assist Using Nonlinear Model Predictive Control
• Plan and Execute Collision-Free Trajectories using KINOVA Gen3 Manipulator (Robotics System

Toolbox)

R2019b

4-2

https://www.mathworks.com/help/releases/R2019b/mpc/ug/control-of-quadrotor-using-nonlinear-model-predictive-control.html
https://www.mathworks.com/help/releases/R2019b/mpc/ug/lane-change-assist-using-nonlinear-model-predictive-control.html
https://www.mathworks.com/help/releases/R2019b/robotics/examples/plan-and-execute-collision-free-trajectory-kinova-gen3.html

R2019a

Version: 6.3

New Features

Bug Fixes

5

Path Following Control System Block: Design, simulate, and
implement lane-following controllers in Simulink
You can now design, simulate, and implement model predictive controllers for path following using
the new Path Following Control System block. This block combines the functionality of the Adaptive
Cruise Control System and Lane Keeping Assist System blocks. You can design your controller either
with or without safe distance spacing control.

You can generate a custom subsystem for this block, which you can modify for your application. This
option is useful when you want to:

• Modify default MPC settings or use advanced MPC features.
• Modify the default controller initial conditions.
• Use different application settings, such as a custom safe following distance definition for adaptive

cruise control.

Run-Time Horizon Tuning: Make run-time updates to controller
prediction and control horizons
You can now vary the prediction and control horizons of MPC and adaptive MPC controllers at run
time.

To vary the horizons at run time from the command line, at each control interval, specify the
PredictionHorizon and ControlHorizon properties of the mpcmoveopt object. You can then
pass the mpcmoveopt object to either mpcmove or mpcmoveAdaptive.

In Simulink, to vary the horizons for an MPC Controller or Adaptive MPC Controller block, select the
Adjust prediction horizon and control horizon at run time parameter. Doing so adds p and m
input ports to the block for the prediction and control horizons, respectively. You must specify the
maximum prediction horizon using the Maximum prediction horizon parameter.

Online horizon tuning supports code generation in both MATLAB and Simulink. To generate code for
a controller that uses online horizon tuning, you must enable dynamic memory allocation.

For more information, see Adjust Horizons at Run Time.

Nonlinear MPC: Simulate as an adaptive or linear time-varying MPC
controller to determine if a linear controller provides comparable
performance
In practice, when producing comparable performance, linear MPC is preferred over nonlinear MPC
due to its higher computational efficiency. You can now determine whether a linear controller
provides comparable performance to the nonlinear case by simulating your nonlinear MPC controller
as either an adaptive or linear time-varying MPC controller.

To do so, set the Optimization.RunAsLinearMPC property your nlmpc controller object to one of
the following:

• "Adaptive" — For each control interval, a linear model is obtained from the specified nonlinear
state and output functions at the current operating point and used across the prediction horizon.

R2019a

5-2

https://www.mathworks.com/help/releases/R2019a/mpc/ref/pathfollowingcontrolsystem.html
https://www.mathworks.com/help/releases/R2018a/mpc/ref/adaptivecruisecontrolsystem.html
https://www.mathworks.com/help/releases/R2018a/mpc/ref/adaptivecruisecontrolsystem.html
https://www.mathworks.com/help/releases/R2018a/mpc/ref/lanekeepingassistsystem.html
https://www.mathworks.com/help/releases/R2019a/mpc/ref/mpcmoveopt.html
https://www.mathworks.com/help/releases/R2019a/mpc/ref/mpc.mpcmove.html
https://www.mathworks.com/help/releases/R2019a/mpc/ref/mpc.mpcmoveadaptive.html
https://www.mathworks.com/help/releases/R2019a/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2019a/mpc/ug/adjust-horizons-at-run-time.html
https://www.mathworks.com/help/releases/R2019a/mpc/ref/nlmpc.html

To determine if an adaptive MPC controller provides comparable performance to the nonlinear
controller, use this option. For more information on adaptive MPC, see Adaptive MPC.

• "TimeVarying" — For each control interval, p linear models are obtained from the specified
nonlinear state and output functions at the p operating points predicted from the previous
interval, one for each prediction horizon step. To determine if a linear time-varying MPC controller
provides comparable performance to the nonlinear controller, use this option. For more
information on time-varying MPC, see Time-Varying MPC.

To use either the "Adaptive" or "TimeVarying" option, your controller must have no custom
constraints and no custom cost function.

Nonlinear MPC: Linearly interpolate block moves when using
manipulated variable blocking with nonlinear MPC controllers
By default, nonlinear MPC controllers use piecewise constant blocking intervals when you specify the
control horizon as a vector, which is often too restrictive for optimal path planning applications.
Therefore, previously, you would specify your control horizon to be approximately equal to your
prediction horizon, which can produce a poorly conditioned nonlinear programming problem.

To produce a less-restrictive, better-conditioned nonlinear programming problem, you can now
specify piecewise linear manipulated variable blocking intervals. To do so, set the
Optimization.MVInterpolationOrder property of your nlmpc controller object to 1.

For more information, see Manipulated Variable Blocking.

5-3

https://www.mathworks.com/help/releases/R2019a/mpc/ug/adaptive-mpc.html
https://www.mathworks.com/help/releases/R2019a/mpc/ug/time-varying-mpc.html
https://www.mathworks.com/help/releases/R2019a/mpc/ref/nlmpc.html
https://www.mathworks.com/help/releases/R2019a/mpc/ug/manipulated-variable-blocking.html

R2018b

Version: 6.2

New Features

Bug Fixes

Compatibility Considerations

6

Nonlinear MPC: Design and simulate model predictive controllers with
nonlinear prediction models, constraints, and cost functions
You can now design and simulate model predictive controllers with nonlinear prediction models,
constraints, and cost functions using the new nlmpc object and Nonlinear MPC Controller Simulink
block. You can use nonlinear MPC controllers for:

• Closed-loop control of a nonlinear plant
• Optimal trajectory planning

By default, nonlinear MPC controllers use fmincon as their nonlinear solver, which requires
Optimization Toolbox™ software. For more information on nonlinear model predictive control, see
Nonlinear MPC.

Run-Time Tuning of Time-Varying Weights: Make run-time updates to
controller weights that change over the prediction horizon
You can now make run-time updates to controller tuning weights that change over the prediction
horizon when simulating implicit MPC controllers, adaptive MPC controllers, and gain-scheduled
MPC controllers at the command line and in Simulink.

To specify time-varying weights at the command line, at each control interval create an mpcmoveopt
object, and set the following weight properties using an array:

• OutputWeights — Output variable tuning weights
• MVWeights — Manipulated variable tuning weights
• MVRateWeights — Manipulated variable rate tuning weights

You can use these specified weights when simulating a controller using mpcmove,
mpcmoveAdaptive, or mpcmoveMultiple.

To specify time-varying weights in Simulink, enable the following input ports on the MPC Controller,
Adaptive MPC Controller, or Multiple MPC Controllers blocks, and connect a matrix signal:

• y.wt — Output variable tuning weights
• u.wt — Manipulated variable tuning weights
• du.wt — Manipulated variable rate tuning weights

MPC Simulink Block Optimal Sequences: Obtain optimal predicted
outputs and states
You can now obtain the predicted optimal sequences for output and state variables from the following
Simulink blocks:

• MPC Controller
• Adaptive MPC Controller
• Multiple MPC Controllers

To access the optimal sequences, add the following output ports to your block:

R2018b

6-2

https://www.mathworks.com/help/releases/R2018b/mpc/ref/nlmpc.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/nonlinearmpccontroller.html
https://www.mathworks.com/help/releases/R2018b/mpc/ug/nonlinear-mpc.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/mpcmoveopt.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/mpcmove.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/mpcmoveadaptive.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/mpcmovemultiple.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/adaptivempccontroller.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/multiplempccontrollers.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/adaptivempccontroller.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/multiplempccontrollers.html

• y.seq — Optimal output variable sequence
• x.seq — Optimal state variable sequence

For more information, see the block reference pages.

Compatibility Considerations
The dimensions of the optimal control sequence output port, mv.seq, have changed. For more
information, see “MPC Simulink block mv.seq output port signal dimensions have changed” on page
6-4.

MPC Simulink Block Run-Time Constraints: Independently enable input
and output constraints
You can now independently enable the ports for only the input and output constraints that you want
to vary at run time when using the following Simulink blocks:

• MPC Controller
• Adaptive MPC Controller
• Multiple MPC Controllers

You can independently enable the following run-time constraint ports:

• umin — Lower manipulated variable bounds
• umax — Upper manipulated variable bounds
• ymin — Lower output variable bounds
• ymax — Upper output variable bounds

For more information, see the block reference pages.

Lane Keeping Assist System Block: Model transport lag in ego car
dynamic model
You can now model transport lag in your ego vehicle model when using the Lane Keeping Assist
System block. This lag can include actuator, sensor, and communication lags.

review Function Results Structure: Programmatically review controller
designs and obtain test results
The review function now returns a structure that contains test result flags. When you return the
tests results, the review function suppresses the HTML testing report.

Using this results structure, you can now programmatically review the designs of one or more MPC
controllers.

ADAS Examples: Design controllers for lane following
The following new examples show how to design and simulate model predictive controllers for lane
following:

6-3

https://www.mathworks.com/help/releases/R2018b/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/adaptivempccontroller.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/multiplempccontrollers.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/lanekeepingassistsystem.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/lanekeepingassistsystem.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/review.html

• Lane Following Control with Sensor Fusion and Lane Detection
• Lane-Following Control with Monocular Camera Perception

Functionality Being Removed or Changed
Support for implementing economic MPC using a linear MPC controller has been removed
Errors

Support for implementing economic MPC using a linear MPC controller has been removed.
Implement economic MPC using the new nonlinear MPC controller instead. For more information on
nonlinear MPC controllers, see Nonlinear MPC.

Update Code

If you previously saved a linear MPC object configured with custom cost or constraint functions, the
software generates a warning when the object is loaded and an error if it is simulated. To suppress
the error and warning messages and continue using your linear MPC controller, mpcobj, without the
custom costs and constraints, set the IsEconomicMPC flag to false.

mpcobj.IsEconomicMPC = false;

To implement your economic MPC controller using a nonlinear MPC object:

1 Create an nlmpc object.
2 Convert your custom cost function to the format required for nonlinear MPC. For more

information on nonlinear MPC cost functions, see Specify Cost Function for Nonlinear MPC.
3 Convert your custom constraint function to the format required for nonlinear MPC. For more

information on nonlinear MPC constraints, see Specify Constraints for Nonlinear MPC.
4 Implement your linear prediction model using state and output functions. For more information

on nonlinear MPC prediction models, see Specify Prediction Model for Nonlinear MPC.

MPC Simulink block mv.seq output port signal dimensions have changed
Behavior change

The signal dimensions of the mv.seq output port of the MPC Controller, Adaptive MPC Controller,
and Multiple MPC Controllers blocks have changed. Previously, this signal was a p-by-Nmv matrix,
where p is the prediction horizon and Nmv is the number of manipulated variables. Now, mv.seq is a
(p+1)-by-Nmv matrix, where row p+1 duplicates row p.

R2018b

6-4

https://www.mathworks.com/help/releases/R2018b/mpc/ug/lane-following-control-with-sensor-fusion-and-lane-detection.html
https://www.mathworks.com/help/releases/R2018b/mpc/ug/lane-following-control-with-monocular-camera-perception.html
https://www.mathworks.com/help/releases/R2018b/mpc/ug/nonlinear-mpc.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/nlmpc.html
https://www.mathworks.com/help/releases/R2018b/mpc/ug/specify-cost-function-for-nonlinear-mpc.html
https://www.mathworks.com/help/releases/R2018b/mpc/ug/specify-constraints-for-nonlinear-mpc.html
https://www.mathworks.com/help/releases/R2018b/mpc/ug/specify-prediction-model-for-nonlinear-mpc.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/adaptivempccontroller.html
https://www.mathworks.com/help/releases/R2018b/mpc/ref/multiplempccontrollers.html

R2018a

Version: 6.1

New Features

Bug Fixes

7

ADAS Blocks: Design, simulate, and implement adaptive cruise control
and lane-keeping algorithms
You can now design, simulate, and implement model predictive controllers for automatic cruise
control and lane keeping assistance using new Simulink blocks. These blocks provide simplified
application-specific interfaces for configuring model predictive controllers.

For both blocks, you can generate a custom subsystem, which you can modify for your application.
This option is useful when you want to:

• Modify default MPC settings or use advanced MPC features.
• Modify the default controller initial conditions.
• Use different application settings, such as a custom safe following distance definition for adaptive

cruise control.

For more information, see Adaptive Cruise Control System and Lane Keeping Assist System.

R2018a

7-2

https://www.mathworks.com/help/releases/R2018a/mpc/ref/adaptivecruisecontrolsystem.html
https://www.mathworks.com/help/releases/R2018a/mpc/ref/lanekeepingassistsystem.html

R2017b

Version: 6.0

New Features

Bug Fixes

8

Economic MPC: Design and simulate model predictive controllers with
arbitrary nonlinear cost function and constraints
Model Predictive Control Toolbox software now supports economic MPC; that is, the ability to
optimize the controller for an arbitrary cost function under arbitrary nonlinear constraints.
Previously, MPC controllers supported only quadratic cost functions with linear constraints. Unlike
nonlinear MPC, economic MPC uses linear prediction models and linear state estimation.

Economic MPC requires Optimization Toolbox software.

For more information, see Economic MPC.

Fast MPC: Guarantee worst-case execution time by using approximate
QP solution
You can now guarantee the worst-case execution time for your MPC controller by applying an
approximate (suboptimal) solution after the number of optimization iterations exceeds a specified
maximum value. This feature applies when using the built-in QP solver, a custom QP solver, and
fmincon for economic MPC.

For more information, see Suboptimal QP Solution.

Custom QP Solvers: Generate code for third-party QP solvers written
in C/C++ or MATLAB code suitable for code generation
You can now generate code for MPC controllers that use a custom QP solver written in either C/C++
or MATLAB code that is suitable for code generation. The controller calls this solver in place of the
built-in QP solver at each control interval. For an example, see Simulate and Generate Code for MPC
Controller with Custom QP Solver.

For more information on:

• Custom QP solvers, see Custom QP Solver.
• Code generation, see Generate Code and Deploy Controller to Real-Time Targets.

Generating code for MPC controllers with custom QP solvers:

• At the command line requires MATLAB Coder™ software.
• In Simulink requires Simulink Coder or Simulink PLC Coder™ software.

Mixed Input/Output Constraints: Update constraints on linear
combinations of inputs and outputs at run time
You can now update mixed input/output constraints at run time when simulating your MPC controller
at the command line or in Simulink. You can update these constraints for traditional and adaptive
MPC controllers. You can also generate code for controllers that use online mixed input/output
constraints.

R2017b

8-2

https://www.mathworks.com/help/releases/R2017b/mpc/ug/economic-mpc.html
https://www.mathworks.com/help/releases/R2017b/mpc/ug/qp-solver.html#mw_078af170-e71f-4592-a355-14e44564dc7f
https://www.mathworks.com/help/releases/R2017b/mpc/ug/generate-code-for-mpc-controller-with-custom-qp-solver.html
https://www.mathworks.com/help/releases/R2017b/mpc/ug/generate-code-for-mpc-controller-with-custom-qp-solver.html
https://www.mathworks.com/help/releases/R2017b/mpc/ug/qp-solver.html#bu7wrmu
https://www.mathworks.com/help/releases/R2017b/mpc/ug/generate-code-and-deploy-controller-to-real-time-targets.html

For an example that uses online custom constraints with an adaptive MPC controller, see Obstacle
Avoidance Using Adaptive Model Predictive Control. For more information on updating constraints at
run time, see Update Constraints at Run Time.

ADAS Examples: Design controllers for adaptive cruise control,
autonomous vehicle steering, and obstacle avoidance
New examples show how to design and simulate advanced driver assistance systems (ADAS) using
model predictive controllers. The new examples are:

• Adaptive Cruise Control System Using Model Predictive Control
• Autonomous Vehicle Steering Using Model Predictive Control
• Obstacle Avoidance Using Adaptive Model Predictive Control
• Adaptive Cruise Control with Sensor Fusion

8-3

https://www.mathworks.com/help/releases/R2017b/mpc/ug/obstacle-avoidance-using-adaptive-model-predictive-control.html
https://www.mathworks.com/help/releases/R2017b/mpc/ug/obstacle-avoidance-using-adaptive-model-predictive-control.html
https://www.mathworks.com/help/releases/R2017b/mpc/gs/run-time-constraint-updating.html
https://www.mathworks.com/help/releases/R2017b/mpc/examples/design-an-adaptive-cruise-control-system-using-model-predictive-control.html
https://www.mathworks.com/help/releases/R2017b/mpc/examples/autonomous-vehicle-steering-using-model-predictive-control.html
https://www.mathworks.com/help/releases/R2017b/mpc/examples/obstacle-avoidance-using-adaptive-model-predictive-control.html
https://www.mathworks.com/help/releases/R2017b/mpc/examples/_mw_c05cdc31-1f2d-4dde-92c2-a3263079bebe.html

R2017a

Version: 5.2.2

New Features

Bug Fixes

9

New Examples: Design and simulate nonlinear model predictive
controller in MATLAB and Simulink
Two new examples show how to design and simulate a nonlinear model predictive controller in
MATLAB and Simulink. Like linear MPC, nonlinear MPC also solves a constrained optimization
problem at each control interval. However, since the plant model is nonlinear, the nonlinear MPC
converts the optimal control problem into a nonlinear optimization problem with a nonlinear cost
function and nonlinear constraints. The new examples are:

• Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control
• Nonlinear MPC Control of an Ethylene Oxidation Plant

Both examples require Optimization Toolbox software.

R2017a

9-2

https://www.mathworks.com/help/releases/R2017a/mpc/examples/swing-up-control-of-a-pendulum-using-nonlinear-model-predictive-control.html
https://www.mathworks.com/help/releases/R2017a/mpc/examples/nonlinear-mpc-control-of-an-ethylene-oxidation-plant.html

R2016b

Version: 5.2.1

New Features

Bug Fixes

Compatibility Considerations

10

Multiple Explicit MPC Controllers Block: Implement gain-scheduled
explicit MPC controllers in Simulink
You can now use the Multiple Explicit MPC Controllers block to implement gain-scheduled explicit
MPC controllers in Simulink. You design an explicit MPC controller for each operating point and
specify a switching signal to choose the active controller. During each control interval, the active
explicit MPC controller determines control actions using a table-lookup control law. The inactive
controllers continue estimating plant states, which allows for bumpless transfer when switching
controllers. The Multiple Explicit MPC Controllers block reduces online computational effort
compared to the Multiple MPC Controllers block.

For more information, see Multiple Explicit MPC Controllers.

MPC Designer App: Automatically estimate controller sample time
when setting internal plant using stable, continuous-time model
To facilitate controller design, MPC Designer now automatically estimates the initial controller
sample time when you specify a stable continuous-time plant prediction model. In this case, the app
sets the controller sample time to 0.1Tr, where Tr is the average rise time of the plant. Previously,
MPC Designer set the controller sample time to a default value of 1.

If you specify an unstable continuous-time plant, MPC Designer sets the controller sample time to 1
by default. If you specify a discrete-time plant, MPC Designer sets the controller sample time to the
plant sample time.

For more information on specifying the MPC controller internal model, see MPC Designer and Design
Controller Using MPC Designer.

MPC Designer App: Load previously saved session when opening app
from command line
You can now load a previously saved session when opening the MPC Designer app. The saved
session data includes all plants, controllers, and scenarios in the Data Browser, the current MPC
structure, and the current plot configuration.

To open MPC Designer and load the session saved in savedSession.mat, type the following at the
MATLAB command line.

mpcDesigner('savedSession.mat')

For more information, see MPC Designer.

MPC Designer App: Import identified linear models
You can now import linear System Identification Toolbox™ models, such as idss or idtf systems,
directly into the MPC Designer app.

MPC Designer converts the specified model to a state-space (ss) system and creates a default MPC
controller using the state-space system as the internal prediction model. The app discards any noise
channels in the identified model.

R2016b

10-2

https://www.mathworks.com/help/releases/R2016b/mpc/ref/multipleexplicitmpccontrollers.html
https://www.mathworks.com/help/releases/R2016b/mpc/ref/mpcdesigner-app.html
https://www.mathworks.com/help/releases/R2016b/mpc/gs/introduction.html
https://www.mathworks.com/help/releases/R2016b/mpc/gs/introduction.html
https://www.mathworks.com/help/releases/R2016b/mpc/ref/mpcdesigner-app.html
https://www.mathworks.com/help/releases/R2016b/mpc/ref/mpcdesigner-app.html

For more information on designing MPC controllers for identified plants, see Design MPC Controller
for Identified Plant Model.

MPC Controller Creation Using Identified Linear Models: Discard noise
channels by default
When you create an MPC controller using a linear System Identification Toolbox model with noise
channels, the software now discards any noise channels from the model by default. Previously, the
noise channels were converted to unmeasured disturbances by default.

Starting in R2016b, to convert noise channels to unmeasured disturbances, first convert the
identified model to a state-space model using the 'augmented' option.

ssModel = ss(idModel,'augmented');

This option creates Measured and Noise input groups in ssModel. You can then create an MPC
controller using the state-space model.

controller = mpc(ssModel,Ts);

The channels in the Noise input group are converted to unmeasured disturbances.

For more information on designing MPC controllers for identified plants, see Design MPC Controller
for Identified Plant Model.

Functionality being removed or changed
Functionality Result Use This Instead Compatibility Considerations
For System Identification
Toolbox models with noise
channels, controller =
mpc(idModel,Ts) now
discards noise channels by
default.

Still works ssModel =
ss(idModel,'augmen
ted')

controller =
mpc(ssModel,Ts)

To convert noise channels to unmeasured
disturbances, convert the identified model
to a state-space model using the
'augmented' option. For more
information, see “MPC Controller Creation
Using Identified Linear Models: Discard
noise channels by default” on page 10-3.

getmpcdata Error • get
• getconstraint
• getEstimator
• getindist
• getoutdist

Replace all instances of getmpcdata using
the command corresponding to your
specific data of interest.

setmpcdata Error • set
• setconstraint
• setEstimator
• setindist
• setoutdist

Replace all instances of setmpcdata using
the command corresponding to your
specific data of interest.

10-3

https://www.mathworks.com/help/releases/R2016b/mpc/gs/design-controller-for-identified-plant.html
https://www.mathworks.com/help/releases/R2016b/mpc/gs/design-controller-for-identified-plant.html
https://www.mathworks.com/help/releases/R2016b/mpc/gs/design-controller-for-identified-plant.html
https://www.mathworks.com/help/releases/R2016b/mpc/gs/design-controller-for-identified-plant.html

Functionality Result Use This Instead Compatibility Considerations
The fully qualified class
name mpcdata.state has
changed to mpcstate.

Not
applicable

Not applicable For mpcstate state object x:

• class(x) now returns 'mpcstate'.
• isa(x,'mpcdata.mpcstate'), now

returns false. Use
isa(x,'mpcstate') instead.

Otherwise, there is no change in
functionality.

R2016b

10-4

R2016a

Version: 5.2

New Features

Bug Fixes

11

Adaptive MPC with Time-Varying Prediction Models: Simulate adaptive
MPC controllers with prediction models that change over the
prediction horizon
You can now specify prediction models and nominal conditions that change over the prediction
horizon when using adaptive MPC. Use these options if you can predict how the plant and nominal
conditions vary in the future.

To vary the prediction model, specify the Plant input argument of mpcmoveAdaptive as an array of
up to p+1 delay-free, discrete-time, state-space models, where p is the prediction horizon of your
MPC controller. To vary the nominal conditions, specify the Nominal input argument of
mpcmoveAdaptive as an array of up to p+1 nominal condition structures.

For more information, see Time-Varying MPC and Time-Varying MPC Control of a Time-Varying Plant.

mpcmoveCodeGeneration Command: Generate C code for computing
optimal manipulated variable control moves
You can now generate C code for computing optimal manipulated variable control moves for any valid
implicit or explicit MPC controller using the new mpcmoveCodeGeneration command.

Use the new getCodeGenerationData command to create the input data structures for
mpcmoveCodeGeneration.

For an example of how to generate C code for computing optimal MPC control moves, see Generate
Code To Compute Optimal MPC Moves in MATLAB.

Custom QP Solver: Simulate model predictive controllers with a QP
solver of your choice
You can now define a custom QP solver for your MPC controller. To do so, you must provide a custom
mpcCustomSolver.m file on the MATLAB path that finds an optimal solution to the general form QP
problem. For more information on the MPC QP problem and how to specify a custom solver, see
Custom QP Solver.

For an example on how to use a custom QP solver, see Simulate MPC Controller with a Custom QP
Solver.

R2016a

11-2

https://www.mathworks.com/help/releases/R2016a/mpc/ref/mpcmoveadaptive.html
https://www.mathworks.com/help/releases/R2016a/mpc/ug/time-varying-mpc.html
https://www.mathworks.com/help/releases/R2016a/mpc/ug/time-varying-mpc-control-of-a-time-varying-linear-system.html
https://www.mathworks.com/help/releases/R2016a/mpc/ref/mpcmovecodegeneration.html
https://www.mathworks.com/help/releases/R2016a/mpc/ref/getcodegenerationdata.html
https://www.mathworks.com/help/releases/R2016a/mpc/ug/code-generation-of-computing-optimal-mpc-moves-in-matlab.html
https://www.mathworks.com/help/releases/R2016a/mpc/ug/code-generation-of-computing-optimal-mpc-moves-in-matlab.html
https://www.mathworks.com/help/releases/R2016a/mpc/ug/qp-solver.html#bu7wrmu
https://www.mathworks.com/help/releases/R2016a/mpc/ug/simulate-mpc-controller-with-a-custom-qp-solver.html
https://www.mathworks.com/help/releases/R2016a/mpc/ug/simulate-mpc-controller-with-a-custom-qp-solver.html

R2015b

Version: 5.1

New Features

Bug Fixes

Compatibility Considerations

12

Redesigned MPC Designer App: Design model predictive controllers in
MATLAB and Simulink using improved interactive workflows
The redesigned MPC Designer app streamlines MATLAB and Simulink workflows for designing model
predictive controllers. You can now:

• Generate MATLAB scripts for MPC controller design tasks. See “MATLAB Script Generation from
MPC Designer App: Automatically script model predictive controller design tasks” on page 12-2.

• Generate a Simulink model with an MPC controller and plant model. See “Simulink Model
Generation from MPC Designer App: Automatically create a Simulink model with an MPC
controller and plant model” on page 12-2.

• Compare responses for multiple MPC controllers in the same plot. See “Comparison of responses
for multiple model predictive controllers in the same plot using MPC Designer app” on page 12-
3.

• Review MPC controllers for design and run-time stability issues. See “Review model predictive
controller design using MPC Designer app” on page 12-3.

• Tune controller performance objectives using interactive sliders. See “Interactive tuning of model
predictive controller performance objectives” on page 12-3.

To open the MPC Designer app, enter the following:

mpcDesigner

For examples of using the app from MATLAB and Simulink, see Design Controller Using MPC
Designer and Design MPC Controller in Simulink.

MATLAB Script Generation from MPC Designer App: Automatically
script model predictive controller design tasks
You can now generate MATLAB scripts for creating and simulating model predictive controllers
designed in the MPC Designer app. Generated MATLAB scripts are useful when you want to
programmatically reproduce designs that you obtained interactively.

For more information, see Generate MATLAB Code from MPC Designer.

Simulink Model Generation from MPC Designer App: Automatically
create a Simulink model with an MPC controller and plant model
You can now generate a Simulink model that uses the current model predictive controller to control
its internal plant model. You can then use the generated model to validate your controller design and
generate code for real-time control applications.

For more information, see Generate Simulink Model from MPC Designer.

mpcqpsolver Command: Develop and generate code for custom model
predictive controllers using KWIK quadratic programming solver
You can use the new mpcqpsolver command to develop custom model predictive controllers. Use
the new mpcqpsolverOptions command to specify additional solver options.

R2015b

12-2

https://www.mathworks.com/help/releases/R2015b/mpc/ref/mpcdesigner-app.html
https://www.mathworks.com/help/releases/R2015b/mpc/gs/introduction.html
https://www.mathworks.com/help/releases/R2015b/mpc/gs/introduction.html
https://www.mathworks.com/help/releases/R2015b/mpc/gs/designing-a-model-predictive-controller-for-a-simulink-plant.html
https://www.mathworks.com/help/releases/R2015b/mpc/ug/generate-matlab-code-from-mpc-designer.html
https://www.mathworks.com/help/releases/R2015b/mpc/ug/generate-simulink-model-from-mpc-designer.html
https://www.mathworks.com/help/releases/R2015b/mpc/ref/mpcqpsolver.html
https://www.mathworks.com/help/releases/R2015b/mpc/ref/mpcqpsolveroptions.html

You can also use mpcspsolver as a general purpose QP solver that supports code generation.

For more information, see Solve Custom MPC Quadratic Programming Problem and Generate Code.

Review model predictive controller design using MPC Designer app
You can now review your model predictive controllers for potential run-time stability and numerical
problems from within the MPC Designer app. To review the design of your current controller, on the

Tuning tab, click Review Design .

For more information on reviewing model predictive controller designs, see review and Review
Model Predictive Controller for Stability and Robustness Issues.

Comparison of responses for multiple model predictive controllers in
the same plot using MPC Designer app
You can now simultaneously compare the response plots for multiple model predictive controllers
using the MPC Designer app. On the MPC Designer tab, in the Compare Controllers drop-down
list, select the controllers to compare.

You can add additional controllers to the MPC Designer Data Browser by:

•
Importing a controller from the MATLAB workspace — Select Import Controller .

•
Copying the current controller — Select Store Controller .

For more information, see Compare Multiple Controller Responses Using MPC Designer.

Interactive tuning of model predictive controller performance
objectives
You can now tune controller performance objectives using interactive sliders. On the Tuning tab, use
the Performance Tuning sliders to adjust the following:

12-3

https://www.mathworks.com/help/releases/R2015b/mpc/examples/solve-custom-mpc-quadratic-programming-problem-and-generate-code.html
https://www.mathworks.com/help/releases/R2015b/mpc/ref/review.html
https://www.mathworks.com/help/releases/R2015b/mpc/ug/reviewing-model-predictive-controller-design-for-potential-stability-and-robustness-issues.html
https://www.mathworks.com/help/releases/R2015b/mpc/ug/reviewing-model-predictive-controller-design-for-potential-stability-and-robustness-issues.html
https://www.mathworks.com/help/releases/R2015b/mpc/ug/compare-multiple-mpc-controller-responses-using-mpc-designer.html

• Closed-Loop Performance objective — Moving towards more aggressive control simultaneously
increases OV/MV weights and decreases MV Rate weights, which leads to tighter control of
outputs and more aggressive control moves. Moving towards more robust control decreases
OV/MV weights and increases MV Rate weights, which leads to relaxed control of outputs and
more conservative control moves.

• State Estimation speed — Moving towards faster state estimation simultaneously increases the
gains for disturbance models and decreases the gains for noise models , which leads to more
aggressive disturbance rejection. Moving towards slower state estimation decreases the gains for
disturbance models and increases the gains for noise models, which leads to more conservative
disturbance rejection.

mpctool command renamed to mpcDesigner
The mpctool command has been renamed. Starting in R2015b, open the MPC Designer app using
the new mpcDesigner command.

For more information, see MPC Designer.

Compatibility Considerations
If you have scripts or functions that use mpctool, consider replacing those calls with mpcDesigner.

Functionality being removed or changed
Functionality Result Use This Instead Compatibility Considerations
mpctool Warns mpcDesigner Consider

replacing mpctool with mpcDesigner.

R2015b

12-4

https://www.mathworks.com/help/releases/R2015b/mpc/ref/mpcdesigner-app.html

R2015a

Version: 5.0.1

New Features

Bug Fixes

Compatibility Considerations

13

OutputVariables Integrator property of MPC controller being removed
The MPC controller property OutputVariables(i).Integrator, or OV(i).Integrator, is being
removed. Previously, you specified custom integrator gains in the default output disturbance model
using OV(i).Integrator. Starting in R2015a, you directly specify a custom output disturbance
model as shown:

% Define a 2-by-2 plant model with no direct feedthrough
Plant = rss(2,2,2);
Plant.D = 0;
% Create an MPC object
MPCobj = mpc(Plant,1);
% Retrieve the default output disturbance model
Dmodel = getoutdist(MPCobj);
% Change the integrator gains
Dmodel = Dmodel * [2 0;0 3];
% Use new disturbance model in MPCobj
setoutdist(MPCobj,'model',Dmodel)

Compatibility Considerations
If your code uses the OV(i).Integrator property, you can update your code to use setoutdist
and getoutdist for managing MPC controller output disturbance models.

For example, replace:

MPCobj.OV(1).Integrator = 2;
MPCobj.OV(2).Integrator = 3;

with:

Dmodel = getoutdist(MPCobj);
Dmodel = Dmodel * [2 0;0 3];
setoutdist(MPCobj,'model',Dmodel)

Use tf(getoutdist(MPCobj)) to validate that the results are equivalent.

setoutdist command 'remove' syntax being removed
The setoutdist(MPCobj,'remove',channels) syntax is being removed. Previously, you removed
integrators from particular channels in the output disturbance model using this syntax. Starting in
R2015a, you directly specify a custom output disturbance model as shown:

% Define a 2-by-2 plant model with no direct feedthrough
Plant = rss(2,2,2);
Plant.D = 0;
% Create an MPC object
MPCobj = mpc(Plant,1);
% Retrieve the default output disturbance model
Dmodel = getoutdist(MPCobj);
% Remove the output disturbance model from output #1
Dmodel = sminreal([0;Dmodel(2,2)]);
% Use new disturbance model in MPCobj
setoutdist(MPCobj,'model',Dmodel)

R2015a

13-2

https://www.mathworks.com/help/releases/R2015a/mpc/ref/setoutdist.html
https://www.mathworks.com/help/releases/R2015a/mpc/ref/getoutdist.html

When removing integrators from output disturbance channels, use sminreal to make the custom
model structurally minimal.

Compatibility Considerations
If your code uses the setoutdist(MPCobj,'remove',channels) syntax, you can update your
code to use setoutdist and getoutdist for managing MPC controller output disturbance models.

For example, replace:

setoutdist(MPCobj,'remove',1)

with:

Dmodel = getoutdist(MPCobj);
Dmodel = sminreal([0;Dmodel(2,2)]);
setoutdist(MPCobj,'model',Dmodel)

Use tf(getoutdist(MPCobj)) to validate that the results are equivalent.

Functionality being removed or changed
Functionality What

Happens
When You
Use This
Functionality
?

Use This Instead Compatibility Considerations

MPCobj.OV(i).‐
Integrator = value

Warns setoutdist(MPCobj,
'model', sys)

Use setoutdist(MPCobj,
'model', sys) to define custom
output disturbance models. For
more information, see
“OutputVariables Integrator
property of MPC controller being
removed” on page 13-2

value = MPCobj.‐
OV(i).Integrator

Warns sys =
getoutdist(MPCobj)

Use getoutdist(MPCobj) to
retrieve MPC output disturbance
models. For more information, see
“OutputVariables Integrator
property of MPC controller being
removed” on page 13-2

setoutdist(MPCobj,
'remove', channels)

Warns setoutdist(MPCobj,
'model', sys)

Use setoutdist(MPCobj,
'model', sys) to define custom
output disturbance models. For
more information, see “setoutdist
command 'remove' syntax being
removed” on page 13-2

13-3

https://www.mathworks.com/help/releases/R2015a/mpc/ref/setoutdist.html
https://www.mathworks.com/help/releases/R2015a/mpc/ref/getoutdist.html

R2014b

Version: 5.0

New Features

Bug Fixes

Compatibility Considerations

14

Explicit MPC control for applications with fast sample times using
precomputed solutions
You can now design, simulate and deploy explicit MPC controllers for your plant. This functionality is
useful for applications with fast sample times using pre-computed solutions.

To obtain an explicit MPC controller, you must first design a traditional MPC (also called implicit
MPC) that is able to achieve your control objectives. Use the generateExplicitMPC command to
design explicit MPC controllers. Use the mpcmoveExplicit command and the Explicit MPC
Controller block to simulate explicit MPC controllers at the command-line and in Simulink,
respectively.

For more information, see the following examples:

• Explicit MPC Control of a Single-Input-Single-Output Plant
• Explicit MPC Control of an Aircraft with Unstable Poles
• Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output

Adaptive MPC control through run-time changes to internal plant
model
You can now simulate and deploy adaptive MPC controllers for your plant. This functionality helps
you control a nonlinear plant across a wide operating range when the new linear plant model is
available at run time.

To obtain an adaptive MPC controller, you must first design a traditional MPC (also called implicit
MPC) that is able to achieve your control objectives at the initial operating condition. Then, update
the internal plant model at each control interval at run time. Use the mpcmoveAdaptive command
and the Adaptive MPC Controller block to simulate adaptive MPC controllers at the command-line
and in Simulink, respectively.

For more information, see the following examples:

• Adaptive MPC Control of Nonlinear Chemical Reactor Using Successive Linearization
• Adaptive MPC Control of Nonlinear Chemical Reactor Using Online Model Estimation

ScaleFactor property for MPC controllers, for making weight tuning
independent of the engineering units of input and output variables
You can now specify scale factor in MPC controller in engineering units. The scale factors make
weights dimensionless. Choosing proper scale factors, i.e. the operating ranges of the variable, makes
weight tuning much easier. The default value of this property is 1.

For more information, see Using Scale Factor to Facilitate Weight Tuning.

R2014b

14-2

https://www.mathworks.com/help/releases/R2014b/mpc/ref/generateexplicitmpc.html
https://www.mathworks.com/help/releases/R2014b/mpc/ref/mpcmoveexplicit.html
https://www.mathworks.com/help/releases/R2014b/mpc/ref/explicitmpccontroller.html
https://www.mathworks.com/help/releases/R2014b/mpc/ref/explicitmpccontroller.html
https://www.mathworks.com/help/releases/R2014b/mpc/ug/explicit-mpc-control-of-a-single-input-single-output-plant.html
https://www.mathworks.com/help/releases/R2014b/mpc/ug/explicit-mpc-control-of-an-aircraft-with-unstable-poles.html
https://www.mathworks.com/help/releases/R2014b/mpc/ug/explicit-mpc-control-of-dc-servomotor-with-constraint-on-unmeasured-output.html
https://www.mathworks.com/help/releases/R2014b/mpc/ref/mpcmoveadaptive.html
https://www.mathworks.com/help/releases/R2014b/mpc/ref/adaptivempccontroller.html
https://www.mathworks.com/help/releases/R2014b/mpc/ug/adaptive-mpc-control-of-nonlinear-chemical-reactor-using-successive-linearization.html
https://www.mathworks.com/help/releases/R2014b/mpc/ug/adaptive-mpc-control-of-nonlinear-chemical-reactor-using-online-model-estimation.html
https://www.mathworks.com/help/releases/R2014b/mpc/examples/using-scale-factor-to-facilitate-weight-tuning.html

Option to use custom state estimation or measured state values
instead of the built-in state estimation in MPC controllers
In addition to built-in state estimation, MPC controllers can now run custom state estimation. You can
specify the state estimation mode by using setEstimator(mpcobj,'default') and
setEstimator(mpcobj,'custom'), respectively.

When using custom state estimation, you can use the Plant, Disturbance and Noise properties of
the controller state object mpcstate to provide custom state values at each control interval. The
values can be from direct state measurements or your own state estimation algorithm. You must not
programmatically change the LastMV property in the mpcstate object because it is still
automatically updated by mpcmove.

For more information, see Using Custom State Estimation.

Compatibility Considerations
If your code changes the LastMV property of the state object to provide an external MV at run time,
you must update the code to use mpcmoveopt and specify the value in the mpcmoveopt.MVused
field instead.

If your code uses the Plant, Disturbance and Noise properties of the state object to provide
external state values, you must use setEstimator(mpcobj,'custom') to specify the controller to
use the custom estimation mode before control starts.

Option to specify manipulated variable target
You can now specify targets on the manipulated variables during run time. At the command line,
specify the value in the MVTarget field of the mpcmoveopt object. In the MPC controller blocks,
select Targets on manipulated variables (mv.target) in the Online Features tab of the dialog
box.

For more information, see Setting Targets for Manipulated Variables.

Run-time weight tuning on manipulated variables
You can now specify weights on the manipulated variables during run time. At the command line,
specify the value in the MVWeights field of the mpcmoveopt object. In the MPC controller blocks,
select Weights on manipulated variables (u,wt) in the Online Features tab of the dialog box.

For more information, see Setting Targets for Manipulated Variables.

Run-time weight tuning and performance monitoring in Multiple MPC
Controllers block
You use the Multiple MPC Controllers block to implement gain-scheduled MPC control strategy by
switching between multiple MPC controllers. You can now use this block to perform all the tasks that
you perform with the MPC Controller block, such as online weight tuning, custom state estimation
and performance monitoring.

14-3

https://www.mathworks.com/help/releases/R2014b/mpc/ref/mpcstate.html
https://www.mathworks.com/help/releases/R2014b/mpc/ref/mpcmove.html
https://www.mathworks.com/help/releases/R2014b/mpc/examples/using-custom-state-estimation.html
https://www.mathworks.com/help/releases/R2014b/mpc/ref/mpcmoveopt.html
https://www.mathworks.com/help/releases/R2014b/mpc/ref/mpcmoveopt.html
https://www.mathworks.com/help/releases/R2014b/mpc/examples/setting-targets-for-manipulated-variables.html
https://www.mathworks.com/help/releases/R2014b/mpc/ref/mpcmoveopt.html
https://www.mathworks.com/help/releases/R2014b/mpc/examples/setting-targets-for-manipulated-variables.html
https://www.mathworks.com/help/releases/R2014b/mpc/ref/multiplempccontrollers.html
https://www.mathworks.com/help/releases/R2014b/mpc/ref/mpccontroller.html

getEstimator and setEstimator commands to obtain and change state
estimation parameters
You can now use getEstimator to obtain the Kalman filter gains L and M, and additional parameters
of the following observer equation used by the MPC controller:

ym[n|n-1] = Cm*x[n|n-1] + Dvm*v[n]

x[n|n] = x[n|n-1] + M*(ym[n]-ym[n|n-1])

x[n+1|n] = A*x[n|n-1] + Bu*u[n] + Bv*v[n] + L*(ym[n] - ym[n|n-1])

Similarly, use setEstimator to change the parameters. For more information, see the
getEstimator and setEstimator reference pages.

Compatibility Considerations
getestim and setestim commands warn and will be removed in a future release. Follow the
instructions in the warning message to replace all instances with getEstimator and
setEstimator.

Definition of external MV signal changed
The definition of externally supplied MV signals has been changed from u[k] to u[k-1]. This implies
that MPC controller now expects the external MV signal to be measured at the previous control
interval k-1 and not at the current interval k.

Compatibility Considerations
If you enabled the ext.mv inport in the MPC Controller or Multiple MPC Controllers block, do the
following:

• If the connected signal does not come from the same MPC block, add a unit delay or memory
block to the signal so that it is converted from u[k] to u[k-1].

• If the connected signal comes directly from the mv outport of the same MPC block, you see a
warning about algebraic loop. To remove the warning, add a unit delay or memory block in the
loop.

There is no incompatibility when you use mpcmove at the command prompt.

Unconnected input and output limits inports default changed to
match mpc object
You can add inports (umin, umax, ymin, ymax) to the MPC controller blocks that you can connect to
run-time constraint signals.

• If a channel is unconstrained in the mpc object, it remains unconstrained even if the inport is
connected and the provided value is ignored.

• If a channel is constrained, the original constraint specified in the mpc object is used when the
corresponding inport is unconnected.

R2014b

14-4

https://www.mathworks.com/help/releases/R2014b/mpc/ref/getestimator.html
https://www.mathworks.com/help/releases/R2014b/mpc/ref/setestimator.html
https://www.mathworks.com/help/releases/R2014b/mpc/ref/mpcmove.html
https://www.mathworks.com/help/releases/R2014b/mpc/ref/mpc.html

Compatibility Considerations
Previously, when unconnected, MPC Controller block assumed the online constraint are unbounded
(+/- inf). In this release, the simulation output may differ from previous releases because of the
change in defaults

14-5

R2014a

Version: 4.2

New Features

Bug Fixes

15

IEC 61131–3 Structured Text generation from MPC Controller and
Multiple MPC Controllers blocks using Simulink PLC Coder
The MPC Controller and Multiple MPC Controllers blocks support generation of IEC 61131–3
Structured Text using Simulink PLC Coder. You can verify the generated code using the CoDeSys
version 2.3 IDE.

For an example of Structured Text generation for an MPC controller see, Simulation and Structured
Text Generation Using PLC Coder.

Reduced RAM usage for C code generated for MPC Controller and
Multiple MPC Controllers blocks
The C code generated for the MPC Controller and Multiple MPC Controllers blocks reduces RAM
usage. This change includes improved handling of memory allocation. For example, now the
generated code does not use dynamic memory allocation, thereby extending support to targets that
disallow dynamic memory allocation.

Estimate of data memory size used by deployed MPC controller at run
time
You can determine if the data memory size required by an MPC controller exceeds the physical
memory of the target system. The report generated by the review command now includes a
platform-independent estimate of the data memory usage of an MPC controller at run time.

For an example, see Review Model Predictive Controller for Stability and Robustness Issues.

R2014a

15-2

https://www.mathworks.com/help/releases/R2014a/mpc/ug/simulation-and-structured-text-generation-using-plc-coder.html
https://www.mathworks.com/help/releases/R2014a/mpc/ug/simulation-and-structured-text-generation-using-plc-coder.html
https://www.mathworks.com/help/releases/R2014a/mpc/ref/review.html
https://www.mathworks.com/help/releases/R2014a/mpc/examples/review-model-predictive-controller-for-stability-and-robustness-issues.html

R2013b

Version: 4.1.3

New Features

Bug Fixes

16

Controller design for plant and disturbance models with internal
delays
You can now design model predictive controllers for plant models, input (unmeasured) disturbance
models, and output disturbance models that have internal delays. Previously, the software supported
only input, output, or transport delays for plant and disturbance models.

When designing the MPC controller, the software discretizes the plant and disturbance models to the
controller sample time. The software replaces each model delay of K sampling periods with K poles at
z = 0. This delay absorption increases the model order, which increases the controller order.

If the models contain significant delays, you must specify an appropriate controller sample time. If
the controller sample time is too large, you may not achieve the desired controller performance.
However, if you sample a model that contains delays too fast, delay absorption leads to a high-order
controller. Such a controller can have a large memory footprint, which can cause difficulty if you
generate code for a real-time target. Also, high-order controllers can have numerical precision issues.

For more information regarding internal delays, see Internal Delays. To learn more about specifying a
plant model, see Plant Specification. To specify the input disturbance model and the output
disturbance model, see setindist and setoutdist.

Single-precision simulation and code generation using MPC Controller
and Multiple MPC Controllers blocks
You can now specify the output data type for the MPC Controller and Multiple MPC Controllers
blocks as single. This change provides the ability to simulate and generate code for model
predictive controllers to be used on single-precision targets. Previously, these blocks supported only
double-precision outputs.

To specify the output data type, in the block dialog, use the Output data type drop-down list.

For more information, see Simulation and Code Generation Using MPC Controller Block, MPC
Controller, and Multiple MPC Controllers.

Conditional execution of MPC Controller and Multiple MPC Controllers
blocks using Function-Call Subsystem and Triggered Subsystem blocks
MPC Controller and Multiple MPC Controllers blocks can now inherit the parent subsystem’s sample
time. Therefore, you can conditionally execute these blocks using the Function-Call Subsystem or
Triggered Subsystem blocks.

To specify that the output sample time be inherited, in the block dialog, select the Block uses
inherited sample time (-1) check box.

Note When you place an MPC controller inside a Function-Call Subsystem or Triggered Subsystem
block, you must execute the subsystem at the controller’s design sample rate. You may see
unexpected results if you use an alternate sample rate.

R2013b

16-2

https://www.mathworks.com/help/releases/R2013b/control/ug/models-with-time-delays.html#bq5_i8g-1
https://www.mathworks.com/help/releases/R2013b/mpc/plant-specification.html
https://www.mathworks.com/help/releases/R2013b/mpc/ref/setindist.html
https://www.mathworks.com/help/releases/R2013b/mpc/ref/setoutdist.html
https://www.mathworks.com/help/releases/R2013b/mpc/ug/code-generation-with-simulink-coder.html
https://www.mathworks.com/help/releases/R2013b/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2013b/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2013b/mpc/ref/multiplempccontrollers.html

For more information, see Using MPC Controller Block Inside Function-Call and Triggered
Subsystems, MPC Controller, and Multiple MPC Controllers.

16-3

https://www.mathworks.com/help/releases/R2013b/mpc/examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html
https://www.mathworks.com/help/releases/R2013b/mpc/examples/using-mpc-controller-block-inside-function-call-and-triggered-subsystems.html
https://www.mathworks.com/help/releases/R2013b/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2013b/mpc/ref/multiplempccontrollers.html

R2013a

Version: 4.1.2

Bug Fixes

17

R2012b

Version: 4.1.1

Bug Fixes

18

R2012a

Version: 4.1

New Features

Bug Fixes

Compatibility Considerations

19

Run-Time Preview of Reference and Measured Disturbance Signals
with MPC Controller Block
This release introduces the ability to preview signals by using the ref and md inports of the MPC
Controller block and the Multiple MPC Controllers block.

The ref inport now accepts an N-by-Ny signal, where N is the number of previewing steps and Ny is
the number of plant outputs.

The md inport now accepts an N-by-Nmd signal, where N is the number of previewing steps and Nmd is
the number of measured disturbances.

You cannot preview if the input signal is a vector, unless Ny or Nmd, as appropriate, is 1.

For more information, see the following examples:

• Improving Control Performance with Look-Ahead (Previewing)
• Chemical Reactor with Multiple Operating Points

Compatibility Considerations
In the current release, if you have models with the MPC Controller block or the Multiple MPC
Controllers block, you will see a warning if your blocks contain:

• A custom reference signal specified in the MATLAB workspace.
• A custom disturbance signal specified in the MATLAB workspace.

Custom Reference Signal Specified in MATLAB Workspace

You must clear this warning. If you ignore the warning, the block will assume that the ref signal is
zero. This behavior is equivalent to leaving the ref inport unconnected.

• Without Look-Ahead (Previewing) Option. To eliminate this warning:

1 Add a From Workspace block to your model.
2 Specify your reference signal variable name as the Data parameter of the From Workspace

block.
3 Connect the output of the From Workspace block to the ref inport of the MPC Controller

block or the Multiple MPC Controllers block.
• With Look-Ahead (Previewing) Option. To eliminate this warning:

1 Copy the Reference Previewer block from the mpc_preview model and place it in your
model. See the Improving Control Performance with Look-Ahead (Previewing)
example for more information.

2 Specify your reference signal variable name as the Signal parameter of the Reference
Previewer block. Also specify appropriate values for the Sampling time and Number of
previewing steps parameters.

3 Connect the output of the Reference Previewer block to the ref inport of the MPC Controller
block or the Multiple MPC Controllers block.

Custom Disturbance Signal Specified in MATLAB Workspace

R2012a

19-2

https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/multiplempccontrollers.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/multiplempccontrollers.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/multiplempccontrollers.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/multiplempccontrollers.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/multiplempccontrollers.html

You must clear this warning. If you ignore the warning, the block will assume that the md signal is
zero. This behavior is equivalent to leaving the md inport unconnected.

• Without Look-Ahead (Previewing) Option. To eliminate this warning:

1 Add a From Workspace block to your model.
2 Specify your disturbance signal variable name as the Data parameter of the From Workspace

block.
3 Connect the output of the From Workspace block to the md inport of the MPC Controller

block or the Multiple MPC Controllers block.
• With Look-Ahead (Previewing) Option. To eliminate this warning:

1 Copy the Measured Disturbance Previewer block from the mpc_preview model, and place it
in your model. See the Improving Control Performance with Look-Ahead
(Previewing) example for more information.

2 Specify your measured disturbance signal variable name as the Signal parameter of the
Reference Previewer block. Also specify appropriate values for the Sampling time and
Number of previewing steps parameters.

3 Connect the output of the Measured Disturbance Previewer block to the md inport of the
MPC Controller block or the Multiple MPC Controllers block.

19-3

https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/multiplempccontrollers.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/multiplempccontrollers.html

R2011b

Version: 4.0

New Features

Bug Fixes

Compatibility Considerations

20

C Code Generation Improvements for All Targets with MPC Controller
Block
The MPC Controller block has been re-implemented using a MATLAB Function block and now
supports code generation for all Simulink Coder targets.

For more information, see the Code Generation with Simulink Coder example.

Faster QP Solver Algorithm for Improving MPC Controller Performance
This release implements a new quadratic problem (QP) solver that uses the KWIK algorithm. KWIK is
faster and more numerically robust than the previous solver for ill-conditioned QP problems. You can
use this solver without default constraints on decision variables.

For more information, see MPC QP Solver.

Run-Time Weight Tuning and Constraint Softening for MPC Controller
This release introduces three new run-time tuning parameters for the MPC Controller block:

• Weights on plant outputs
• Weights on manipulated variables rate
• Weight on overall constraints softening

You can use these parameters to tune the weights on plant outputs, manipulated variables rate, and
overall constraint softening. These capabilities are available in real time, without redesigning or re-
implementing the MPC controller, and help adjust the controller performance.

For more information, see the Tuning Controller Weights example.

You can also use an mpcmoveopt object as an input to mpcmove to tune the weights and constraints.

For more information, see the following examples:

• Switching Controllers Based on Optimal Costs
• Varying Input and Output Constraints

Run-Time Monitoring of MPC Controller Performance to Detect When
an Optimal Solution Cannot Not Be Found
This release introduces a new outport parameter—Optimization status in the MPC Controller block.
You can use this outport to monitor the status of the optimization and take the necessary action when
an optimal solution cannot be found. For more information, see the Monitoring Optimization
Status to Detect Controller Failures example.

You can also use the Info.QPCode field of the output of mpcmove to monitor the status of the
optimization.

For more information, see the mpcmove reference page.

R2011b

20-2

https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/matlabfunction.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ug/f5-22322.html#bs6qy8j
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpcmoveopt.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpcmove.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpcmove.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpcmove.html

review Command for Diagnosing Issues with MPC Controller
Parameters That Could Lead to Run-Time Failures
You can now use review to detect potential stability and robustness issues (both offline and at run
time) with an MPC Controller design. The following aspects of the system are inspected:

• Stability of the model predictive controller and the closed loop
• Potential for contradictory settings in the specified constraints and mitigation of an ill-conditioned

QP problem by softening constraints
• Validity of QP Hessian matrix

Use this command before implementing the MPC Controller, in conjunction with simulation.

For more information, see the following:

• review reference
• Reviewing Model Predictive Controller Design for Potential Stability and

Robustness Issues example

mpcmove Returns Aligned Time Horizons for Optimal Control,
Predicted Output and Estimated State
mpcmove now returns Info with a time horizon of t=k,...,k+p, where k is the current time and p
is the prediction horizon for the following fields:

• Info.Uopt — Optimal manipulated variable adjustments
• Info.Yopt — Predicted output
• Info.Xopt — Predicted state
• Info.Topt — Time horizon

You can now plot Info.Uopt,Info.Yopt and Info.Xopt using Info.Topt as the time vector.

For more information, see the mpcmove reference page.

Functionality Being Removed or Changed
Functionality What Happens When

You Use This
Functionality?

Use This Instead Compatibility
Considerations

getmpcdata Still runs • get
• getconstraint
• getestim
• getindist
• getoutdist

Not applicable

pack Still runs Not applicable Not applicable
qpdantz Warns quadprog (requires

Optimization Toolbox)
Replace all instances of
qpdantz with quadprog.

20-3

https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/review.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/review.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpcmove.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpcmove.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/qpdantz.html
https://www.mathworks.com/help/toolbox/optim/ug/quadprog.html

Functionality What Happens When
You Use This
Functionality?

Use This Instead Compatibility
Considerations

setmpcdata Still runs • set
• setconstraint
• setestim
• setindist
• setoutdist

Not applicable

R2011b

20-4

R2011a

Version: 3.3

New Features

Bug Fixes

21

Support for Custom Constraints on MPC Controller Inputs and Outputs
In addition to upper and lower bounds, you can now specify constraints on linear combinations of an
MPC controller inputs (u(t)) and outputs (y(t)). Specify custom constraints, such as u1 + u2 < 1 or u
+ y < 2, in the mpc object using setconstraint.

For more information, see:

• Custom Constraints on Inputs and Outputs
• Custom Constraints in a Blending Process
• MPC Control with Constraints on a Combination of Input and Output Signals

example

Ability to Specify Terminal Constraints and Weights on MPC Controller
You can now specify weights and constraints on the terminal predicted states of an MPC controller.

Using terminal weights, you can achieve infinite horizon control. For example, you can design an
unconstrained MPC controller that behaves in exactly the same way as a Linear-Quadratic Regulator
(LQR). You can use terminal constraints as an alternative way to achieve closed-loop stability by
defining a terminal region.

You can specify both weights and constraints using the setterminal command.

For more information, see:

• Terminal Weights and Constraints
• Using Terminal Penalty to Provide LQR Performance
• Implementing Infinite-Horizon LQR by Setting Terminal Weights in a Finite-

Horizon MPC Formulation example

Ability to Access Optimal Cost and Optimal Control Sequence
This release introduces two new parameters Enable optimal cost outport and Enable control
sequence outport in the MPC Controller block. Using these parameters, you can access the optimal
cost and control sequence along the prediction horizon. This information helps you analyze control
performance.

You can also access the optimal cost and control sequence programmatically using the new Cost and
Yopt fields, respectively, of the structure info returned by mpcmove.

For more information on using optimal cost and control sequence, see the following examples:

• MPC Control with Input Quantization Based on Comparing the Optimal Costs
• Analysis of Control Sequences Optimized by MPC on a Double Integrator

System

R2011a

21-2

https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpc.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/setconstraint.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ug/f5-11235.html#bsxjsoo-1
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ug/bsxf1rn-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/setterminal.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ug/f5-11235.html#bsxjsmq-1
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ug/bsxf1s4-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpcmove.html

R2010b

Version: 3.2.1

No New Features or Changes

22

R2010a

Version: 3.2

New Features

Bug Fixes

23

New Ability to Analyze SISO Generalized Predictive Controllers (GPC)
You can now use gpc2mpc to convert your SISO GPC controller to an MPC controller. Analyze and
simulate the resulting MPC controller using available Model Predictive Control Toolbox commands.

For more information, see the gpc2mpc reference page.

R2010a

23-2

https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/gpc2mpc.html

R2009b

Version: 3.1.1

Bug Fixes

24

R2009a

Version: 3.1

New Features

Bug Fixes

25

New Sensitivity Analysis to Determine Effect of Weights on Tuning
MPC Controllers
You can now perform sensitivity analysis to determine the effect of weights on the closed-loop
performance of your system. You can perform sensitivity analysis using the following:

• MPC Tuning Advisor. See Tuning Advisor in the Model Predictive Control User's Guide.
• sensitivity command. See the sensitivity reference page.

R2009a

25-2

https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ug/f4-21451.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/sensitivity.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/f3-1526.html

R2008b

Version: 3.0

New Features

Bug Fixes

26

New Multiple MPC Controllers Block in the Model Predictive Control
Toolbox Simulink Library
You can now use the Multiple MPC Controllers block in Simulink software to control a nonlinear
process over a range of operating points. You include an MPC controller for each operating point in
the Multiple MPC Controllers block and specify switching between these controllers in real-time
based on the input scheduling signal to the block. If you need to change the design of a specific
controller, you can open the MPC Design Tool GUI directly from the Multiple MPC Controllersblock.

During model simulation, Model Predictive Control Toolbox provides bumpless transfer when the
system transitions between operating points.

To learn more about configuring the new block, see the Multiple MPC Controllers block reference
page.

Tested Code Generation Support for Real-Time Workshop Target
Systems
After designing an MPC controller in Simulink software using the MPC Controller block, you can use
Real-Time Workshop® software to build this controller and deploy it to the following target systems
for real-time control:

• Generic Real-Time Target
• Real-Time Workshop Embedded Coder™
• Real-Time Windows Target
• Rapid Simulation Target
• Target Support Package FM5
• xPC Target (known as Simulink Real-Time™ as of R2014a)
• dSpace Target
• Target for Infineon TriCore

The following target systems are either not supported or not recommended because they result in
significant performance issues:

• Embedded Target for TI C2000 DSP
• Embedded Target for TI C6000 DSP
• Target Support Package IC1 (for Infineon C166)
• Tornado (VxWorks) Real-Time Target

Note The Multiple MPC Controllers block has not been tested with the target systems supported
by Real-Time Workshop software.

Ability to Design Controllers with Time-Varying Weights and
Constraints Using the GUI
While you design an MPC controller using the MPC Design Tool graphical user interface (GUI), you
can specify time-varying weights and constraints for manipulated variables, rate of change of

R2008b

26-2

https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/multiplempccontrollers.html

manipulated variables, and output variables. In the previous version, you could only specify the time-
varying weights and constraints at the command line.

Furthermore, you can load an MPC controller with time-varying information from the command line
into the MPC Design Tool GUI.

To learn more about the new options in the MPC Design Tool GUI, see the Model Predictive Control
Toolbox documentation.

26-3

R2008a

Version: 2.3.1

No New Features or Changes

27

R2007b

Version: 2.3

New Features

28

New Option for Specifying Time-Varying Constraints
You can now configure the Model Predictive Controller block in Simulink to accept time-varying
constraint signals that are generated by other blocks. To add inports to which you can connect time-
varying constraint specifications, select the new Enable input port for input and output limits
check box in the MPC Controller block. See also the mpcvarbounds demo.

In the previous version, you could only specify the constraints during the design phase and these
constraints remained constant for the duration of the simulation.

For more information about the new Enable input port for input and output limits check box in
the Model Predictive Controller block, see the MPC Controller block reference page.

Ability to Specify Nondiagonal Q and R Weight Matrices in the Cost
Function
You can now specify off-diagonal weights in the cost function. In the previous release, only diagonal Q
and R matrices were supported.

To learn more about specifying off-diagonal weights, see the discussion about weights in the MPC
Controller block reference pages.

To access a new demo that shows how to use nondiagonal weight matrices, type the following
command at the MATLAB prompt:

showdemo('mpcweightsdemo')

R2007b

28-2

https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpccontroller.html
https://www.mathworks.com/help/releases/R2012a/toolbox/mpc/ref/mpccontroller.html

R2007a

Version: 2.2.4

Bug Fixes

29

R2006b

Version: 2.2.3

No New Features or Changes

30

R2006a

Version: 2.2.2

New Features

31

Bumpless Transfer Added to MPC Block
Bumpless transfer between manual and automatic operation or from one controller to another has
been added to the Model Predictive Controller block in Simulink. This block now allows feedback of
the true manipulated variable signals, which allows the controller to maintain an accurate state
estimate during periods when its calculated adjustments are not being sent to the plant. For example,
the controller's output might be ignored during a startup period or during temporary intervention by
a (simulated) plant operator. If the controller assumes that its adjustments are being implemented
(the default behavior), its state estimate will be incorrect, leading to a "bump" when the controller is
reconnected to the plant. A tutorial example has been added to the documentation.

New Bumpless Transfer Demo
A new demo illustrating bumpless transfer has been added to the toolbox.

R2006a

31-2

R14SP3

Version: 2.2.1

No New Features or Changes

32

R14SP2

Version: 2.2

No New Features or Changes

33

	R2021a
	Discrete Control Set MPC: Solve linear MPC problems with manipulated variables belonging to discrete sets
	Multistage Nonlinear MPC: Solve nonlinear MPC problems efficiently with multiple stage cost and constraints
	GPU Code Generation Support in MATLAB and Simulink
	GPU Code Generation in MATLAB
	Code Generation in Simulink

	Functionality being removed or changed
	Support for opening MPC Design Tool sessions saved before release R2015b will be removed

	R2020b
	Implement MPC Controllers using Embotech FORCES PRO Solvers
	Online Time-Varying Constraints: Simulate MPC controllers with constraints that vary over the prediction horizon at run time
	Reference Examples: Design and simulate automated driving applications that use model predictive controllers

	R2020a
	Interior-Point QP Solver: Efficiently compute optimal control moves for large-scale MPC problems
	Nonlinear MPC Code Generation: Generate code for nonlinear MPC controllers that use default fmincon solver with the SQP algorithm
	Code Generation in MATLAB
	Code Generation in Simulink
	Simulate Nonlinear MPC Controller Using MEX File

	Reference Examples: Design model predictive controllers for automated driving applications
	Functionality Being Removed or Changed
	MPC controller properties for configuring active-set QP solver have changed
	mpcqpsolverOptions will be removed
	mpcqpsolver will be removed
	mpchelp has been removed

	R2019b
	Reference Examples: Design model predictive controllers for robotics and automated driving applications

	R2019a
	Path Following Control System Block: Design, simulate, and implement lane-following controllers in Simulink
	Run-Time Horizon Tuning: Make run-time updates to controller prediction and control horizons
	Nonlinear MPC: Simulate as an adaptive or linear time-varying MPC controller to determine if a linear controller provides comparable performance
	Nonlinear MPC: Linearly interpolate block moves when using manipulated variable blocking with nonlinear MPC controllers

	R2018b
	​Nonlinear MPC: Design and simulate model predictive controllers​ with nonlinear prediction models, constraints, and cost functions
	Run-Time Tuning of Time-Varying Weights: Make run-time updates to controller weights that change over the prediction horizon​
	​MPC Simulink Block Optimal Sequences: Obtain optimal predicted outputs and states
	​MPC Simulink Block Run-Time Constraints: Independently enable input and output constraints
	Lane Keeping Assist System Block: Model transport lag in ego car dynamic model
	​review Function Results Structure: Programmatically review controller designs and obtain test results
	​ADAS Examples: Design controllers for lane following
	Functionality Being Removed or Changed
	Support for implementing economic MPC using a linear MPC controller has been removed
	MPC Simulink block mv.seq output port signal dimensions have changed

	R2018a
	ADAS Blocks: Design, simulate, and implement adaptive cruise control and lane-keeping algorithms

	R2017b
	Economic MPC: Design and simulate model predictive controllers with arbitrary nonlinear cost function and constraints
	Fast MPC: Guarantee worst-case execution time by using approximate QP solution​​
	Custom QP Solvers: Generate code for third-party QP solvers written in C/C++ or MATLAB code suitable for code generation​
	Mixed Input/Output Constraints: Update constraints on linear combinations of inputs and outputs at run time
	ADAS Examples: Design controllers for adaptive cruise control, autonomous vehicle steering, and obstacle avoidance

	R2017a
	New Examples: Design and simulate nonlinear model predictive controller in MATLAB and Simulink

	R2016b
	Multiple Explicit MPC Controllers Block: Implement gain-scheduled explicit MPC controllers in Simulink
	MPC Designer App: Automatically estimate controller sample time when setting internal plant using stable, continuous-time model
	MPC Designer App: Load previously saved session when opening app from command line
	MPC Designer App: Import identified linear models
	MPC Controller Creation Using Identified Linear Models: Discard noise channels by default
	Functionality being removed or changed

	R2016a
	Adaptive MPC with Time-Varying Prediction Models: Simulate adaptive MPC controllers with prediction models that change over the prediction horizon
	mpcmoveCodeGeneration Command: Generate C code for computing optimal manipulated variable control moves
	Custom QP Solver: Simulate model predictive controllers with a QP solver of your choice

	R2015b
	Redesigned MPC Designer App: Design model predictive controllers in MATLAB and Simulink using improved interactive workflows
	MATLAB Script Generation from MPC Designer App: Automatically script model predictive controller design tasks
	Simulink Model Generation from MPC Designer App: Automatically create a Simulink model with an MPC controller and plant model
	mpcqpsolver Command: Develop and generate code for custom model predictive controllers using KWIK quadratic programming solver
	Review model predictive controller design using MPC Designer app
	Comparison of responses for multiple model predictive controllers in the same plot using MPC Designer app
	Interactive tuning of model predictive controller performance objectives
	mpctool command renamed to mpcDesigner
	Functionality being removed or changed

	R2015a
	OutputVariables Integrator property of MPC controller being removed
	setoutdist command 'remove' syntax being removed
	Functionality being removed or changed

	R2014b
	Explicit MPC control for applications with fast sample times using precomputed solutions
	Adaptive MPC control through run-time changes to internal plant model
	ScaleFactor property for MPC controllers, for making weight tuning independent of the engineering units of input and output variables
	Option to use custom state estimation or measured state values instead of the built-in state estimation in MPC controllers
	Option to specify manipulated variable target
	Run-time weight tuning on manipulated variables
	Run-time weight tuning and performance monitoring in Multiple MPC Controllers block
	getEstimator and setEstimator commands to obtain and change state estimation parameters
	Definition of external MV signal changed
	Unconnected input and output limits inports default changed to match mpc object

	R2014a
	IEC 61131–3 Structured Text generation from MPC Controller and Multiple MPC Controllers blocks using Simulink PLC Coder
	Reduced RAM usage for C code generated for MPC Controller and Multiple MPC Controllers blocks
	Estimate of data memory size used by deployed MPC controller at run time

	R2013b
	Controller design for plant and disturbance models with internal delays
	Single-precision simulation and code generation using MPC Controller and Multiple MPC Controllers blocks
	Conditional execution of MPC Controller and Multiple MPC Controllers blocks using Function-Call Subsystem and Triggered Subsystem blocks

	R2013a
	R2012b
	R2012a
	Run-Time Preview of Reference and Measured Disturbance Signals with MPC Controller Block

	R2011b
	C Code Generation Improvements for All Targets with MPC Controller Block
	Faster QP Solver Algorithm for Improving MPC Controller Performance
	Run-Time Weight Tuning and Constraint Softening for MPC Controller
	Run-Time Monitoring of MPC Controller Performance to Detect When an Optimal Solution Cannot Not Be Found
	review Command for Diagnosing Issues with MPC Controller Parameters That Could Lead to Run-Time Failures
	mpcmove Returns Aligned Time Horizons for Optimal Control, Predicted Output and Estimated State
	Functionality Being Removed or Changed

	R2011a
	Support for Custom Constraints on MPC Controller Inputs and Outputs
	Ability to Specify Terminal Constraints and Weights on MPC Controller
	Ability to Access Optimal Cost and Optimal Control Sequence

	R2010b
	R2010a
	New Ability to Analyze SISO Generalized Predictive Controllers (GPC)

	R2009b
	R2009a
	New Sensitivity Analysis to Determine Effect of Weights on Tuning MPC Controllers

	R2008b
	New Multiple MPC Controllers Block in the Model Predictive Control Toolbox Simulink Library
	Tested Code Generation Support for Real-Time Workshop Target Systems
	Ability to Design Controllers with Time-Varying Weights and Constraints Using the GUI

	R2008a
	R2007b
	New Option for Specifying Time-Varying Constraints
	Ability to Specify Nondiagonal Q and R Weight Matrices in the Cost Function

	R2007a
	R2006b
	R2006a
	Bumpless Transfer Added to MPC Block
	New Bumpless Transfer Demo

	R14SP3
	R14SP2

